Most positive integers may be written as a sum of a sequence of at least two consecutive positive integers. For instance,

```
6 = 1 + 2 + 3
9 = 5 + 4 = 2 + 3 + 4
```

but 8 cannot be so written.

Write a program which will compute how many different ways an input number may be written as a sum of a sequence of at least two consecutive positive integers.

Input

The first line of input will contain the number of problem instances \boldsymbol{N} on a line by itself, (1 <= $N<=1000$). This will be followed by \boldsymbol{N} lines, one for each problem instance. Each problem line will have the problem number, a single space and the number to be written as a sequence of consecutive positive integers. The second number will be less than $2^{\wedge} 31$ (so will fit in a 32-bit integer).

Output

The output for each problem instance will be a single line containing the problem number, a single space and the number of ways the input number can be written as a sequence of consecutive positive integers.

Sample Input	Sample Output
7	11 1 6
2	2
2	3
3	8
4	4
5	4
5	8
6	987654321
7	987654323
	6

