

I • Sequence Sum Possibilities

Most positive integers may be written as a sum of a sequence of at least two consecutive positive integers. For instance,

6 = 1 + 2 + 39 = 5 + 4 = 2 + 3 + 4

but 8 cannot be so written.

Write a program which will compute how many different ways an input number may be written as a sum of a sequence of at least two consecutive positive integers.

Input

The first line of input will contain the number of problem instances \mathbf{N} on a line by itself, (1 <= \mathbf{N} <= 1000). This will be followed by \mathbf{N} lines, one for each problem instance. Each problem line will have the problem number, a single space and the number to be written as a sequence of consecutive positive integers. The second number will be less than 2^31 (so will fit in a 32-bit integer).

Output

The output for each problem instance will be a single line containing the problem number, a single space and the number of ways the input number can be written as a sequence of consecutive positive integers.

Sample Input	Sample Output
7	11
16	2 2
29	3 0
3 8	4 8
4 1800	5 17
5 987654321	6 1
6 987654323	7 23
7 987654325	