Greater New York

 Programming ContestHofstra University
Hempstead, NY
event sponsor

C•Balls

The classic Two Glass Balls brain-teaser is often posed as:
"Given two identical glass spheres, you would like to determine the lowest floor in a 100 -story building from which they will break when dropped. Assume the spheres are undamaged when dropped below this point. What is the strategy that will minimize the worst-case scenario for number of drops?"

Suppose that we had only one ball. We'd have to drop from each floor from 1 to 100 in sequence, requiring 100 drops in the worst case.

Now consider the case where we have two balls. Suppose we drop the first ball from floor \boldsymbol{n}. If it breaks we're in the case where we have one ball remaining and we need to drop from floors 1 to $n-1$ in sequence, yielding \boldsymbol{n} drops in the worst case (the first ball is dropped once, the second at most $\boldsymbol{n}-1$ times). However, if it does not break when dropped from floor \boldsymbol{n}, we have reduced the problem to dropping from floors $n+1$ to 100 . In either case we must keep in mind that we've already used one drop. So the minimum number of drops, in the worst case, is the minimum over all \boldsymbol{n}.

You will write a program to determine the minimum number of drops required, in the worst case, given \boldsymbol{B} balls and an \boldsymbol{M}-story building.

Input

The first line of input contains a single integer $\boldsymbol{P},(1 \leq \boldsymbol{P} \leq 1000)$, which is the number of data sets that follow. Each data set consists of a single line containing three (3) decimal integer values: the problem number, followed by a space, followed by the number of balls $\boldsymbol{B},(1 \leq \boldsymbol{B} \leq 50)$, followed by a space and the number of floors in the building \boldsymbol{M}, $(1 \leq \boldsymbol{M} \leq 1000)$.

Output

For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the minimum number of drops needed for the corresponding values of \boldsymbol{B} and \boldsymbol{M}.

Sample Input	Sample Output
4	14
1210	214
22100	324
32300	410
425900	

