

F • Adjacent Bit Counts

Greater New York

Programming Contest Hofstra University Hempstead, NY

For a string of **n** bits $x_{1}, x_{2}, x_{3}, ..., x_{n}$, the *adjacent bit count* of the string (AdjBC(x)) is given by

 $x_1^* x_2 + x_2^* x_3 + x_3^* x_4 + \dots + x_{n-1}^* x_n$

which counts the number of times a 1 bit is adjacent to another 1 bit. For example:

AdjBC(011101101) = 3 AdjBC(111101101) = 4 AdjBC(010101010) = 0

Write a program which takes as input integers n and k and returns the number of bit strings x of n bits (out of 2^n) that satisfy AdjBC(x) = k. For example, for 5 bit strings, there are 6 ways of getting AdjBC(x) = 2:

11100, 01110, 00111, 10111, 11101, 11011

Input

The first line of input contains a single integer P, $(1 \le P \le 1000)$, which is the number of data sets that follow. Each data set is a single line that contains the data set number, followed by a space, followed by a decimal integer giving the number (n) of bits in the bit strings, followed by a single space, followed by a decimal integer (k) giving the desired adjacent bit count. The number of bits (n) will not be greater than 100 and the parameters n and k will be chosen so that the result will fit in a *signed* 32-bit integer.

Output

For each data set there is one line of output. It contains the data set number followed by a single space, followed by the number of n-bit strings with adjacent bit count equal to k.

Sample Input	Sample Output
10	16
1 5 2	2 63426
2 20 8	3 1861225
3 30 17	4 168212501
4 40 24	5 44874764
5 50 37	6 160916
6 60 52	7 22937308
7 70 59	8 99167
8 80 73	9 15476
9 90 84	10 23076518
10 100 90	