F•Adjacent Bit Counts

For a string of \boldsymbol{n} bits $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, the adjacent bit count of the string $(\operatorname{AdjBC}(x))$ is given by

$$
x_{1}{ }^{*} x_{2}+x_{2}{ }^{*} x_{3}+x_{3}{ }^{*} x_{4}+\ldots+x_{n-1}{ }^{*} x_{n}
$$

which counts the number of times a 1 bit is adjacent to another 1 bit. For example:

$$
\begin{aligned}
\operatorname{AdjBC}(011101101) & =3 \\
\operatorname{AdjBC}(111101101) & =4 \\
\operatorname{AdjBC}(010101010) & =0
\end{aligned}
$$

Write a program which takes as input integers \boldsymbol{n} and \boldsymbol{k} and returns the number of bit strings \boldsymbol{x} of \boldsymbol{n} bits (out of 2^{n}) that satisfy $\operatorname{AdjBC}(\boldsymbol{x})=k$. For example, for 5 bit strings, there are 6 ways of getting $\operatorname{AdjBC}(x)=2:$

$$
\text { 11100, 01110, 00111, 10111, 11101, } 11011
$$

Input

The first line of input contains a single integer $\boldsymbol{P},(1 \leq \boldsymbol{P} \leq 1000)$, which is the number of data sets that follow. Each data set is a single line that contains the data set number, followed by a space, followed by a decimal integer giving the number (\boldsymbol{n}) of bits in the bit strings, followed by a single space, followed by a decimal integer (\boldsymbol{k}) giving the desired adjacent bit count. The number of bits (\boldsymbol{n}) will not be greater than 100 and the parameters \boldsymbol{n} and \boldsymbol{k} will be chosen so that the result will fit in a signed 32-bit integer.

Output

For each data set there is one line of output. It contains the data set number followed by a single space, followed by the number of \boldsymbol{n}-bit strings with adjacent bit count equal to \boldsymbol{k}.

Sample Input	Sample Output
10	16
152	263426
2208	31861225
33017	4168212501
44024	544874764
55037	6160916
66052	722937308
77059	899167
88073	915476
99084	1023076518
1010090	

