

A number is said to be made up of non-decreasing digits if all the digits to the left of any digit is less than or equal to that digit. For example, the four-digit number 1234 is composed of digits that are non-decreasing. Some other four-digit numbers that are composed of non-decreasing digits are 0011, 1111, 1112, 1122, 2223. As it turns out, there are exactly 715 four-digit numbers composed of non-decreasing digits.

Notice that leading zeroes are required: 0000, 0001, 0002 are all valid four-digit numbers with nondecreasing digits.

For this problem, you will write a program that determines how many such numbers there are with a specified number of digits.

Input

The first line of input contains a single integer $\boldsymbol{P},(1 \leq \boldsymbol{P} \leq 1000)$, which is the number of data sets that follow. Each data set is a single line that contains the data set number, followed by a space, followed by a decimal integer giving the number of digits $\boldsymbol{N},(1 \leq \boldsymbol{N} \leq 64)$.

Output

For each data set there is one line of output. It contains the data set number followed by a single space, followed by the number of \boldsymbol{N} digit values that are composed entirely of non-decreasing digits.

Sample Input	Sample Output
3	
1	2
2	3
3	4
2	225
3	715

